

Washington Department of Fish and Wildlife

Point No Point Treaty Council

- To: NOAA-Fisheries Service Sustainable Fisheries Division, Salmon Recovery Division, Northwest Fisheries Science Center, and Puget Sound Technical Review Team
- From: Thom H. Johnson, Jim Ames, and Kyle Adicks (WDFW) Chris Weller and Nick Lampsakis (PNPTC)
- Date: March 1, 2006
- Subject: 2005 progress report on Hood Canal and Strait of Juan de Fuca summer chum salmon

This memorandum report is intended to provide information on management activities pertaining to stock assessment and harvest of Hood Canal and Strait of Juan de Fuca summer chum for the year 2005. This interim report is relatively brief, providing information currently available.

Stock Assessment

Escapement: Spawning ground surveys were conducted throughout the summer chum return period to estimate the abundance of summer chum spawners for all known stocks in the Hood Canal and Strait of Juan de Fuca summer chum regions during 2005. Results of the surveys are summarized in Table 1 and regional escapement estimates for the period 1974 through 2005 are described in Table 2.

The escapements of Hood Canal and Strait of Juan de Fuca summer chum remained relatively high in 2005. A total of 25,439 summer chum escaped to the region's streams (including fish collected for hatchery broodstock); 15,757 spawners to Hood Canal streams and 9,682 spawners to Strait of Juan de Fuca streams (Tables 1 and 2).

Table 1. Preliminary estimates of summer chum salmon spawnerescapement for Hood Canal and Strait of Juan de Fuca streams,2005.

	Natural			
	spawner	Brood-	Total	
Stream	escapement	stock	escapement	Comments
Hood Canal				
	0		0	No fish
Anderson Cr.	0	0	0	observed
Big Beef Cr.	1,124	0	1,124	Trap + AUC downstream of trap + 11 adults from NOAA-F study $\frac{1}{2}$
Dewatto R.	23		23	AUC
Tahuya R.	4		4	AUC
Union R.	1,885	102	1,987	Trap
Skokomish R.	5		5	AUC; probably minimum estimate
Lilliwaup R.	951	98	1,049	AUC adjusted for broodstock
Hamma Hamma R.	1,272	142	1,414	AUC adjusted for broodstock
				No fish
John Cr.	. 0		0	observed
Fulton Cr.	3		3	Peak live count
Duckabush R.	818		818	AUC
Dosewallips R.	2,658		2,658	AUC
Big Quilcene R.	5,702	104	5,806	AUC; broodstock for NMFS research study in Big Beef Cr.
Little Quilcene R.	866		866	AUC
Strait of Juan de H	Tuca			
Chimacum Cr.	1.396		1.396	AUC + 24 in Kala Pt. Lagoon
Snow Cr.	832		832	Trap + AUC downstream of trap
Salmon Cr.	6,142		6,142	Trap + redds downstream of trap; incl. 6 morts in trap
JCL Cr.	1,247	63	1,310	Trap + redds downstream of trap; incl. 24 pre-esc. loss
Dungeness R.	2		2	2 dead on 10/11/05, RM 0.0-2.2
Hood Canal total	15,311	446	15,757	
SJFuca total	9,619	63	9,682	_
HC / SJFuca total	24,930	509	25,439	

Table 2. Escapement (including hatchery broodstock) for Hood Canal and the Strait of Juan de Fuca summer chum salmon stocks, 1974-2005.						
Return year	Hood Canal escapement	Strait of Juan de Fuca escapement	HC/SJF combined			
1974	12.281	1.768	14.049			
1975	18.248	1,448	19.696			
1976	27.715	1,494	29.209			
1977	10.711	1.644	12.355			
1978	19.710	3.080	22,790			
1979	6.554	761	7.315			
1980	3,777	5.109	8.886			
1981	2,374	884	3,258			
1982	2,623	2,751	5,374			
1983	899	1,139	2,038			
1984	1,414	1,579	2,993			
1985	1,109	232	1,341			
1986	2,552	1,087	3,639			
1987	757	1,991	2,748			
1988	2,967	3,690	6,657			
1989	598	388	986			
1990	429	341	770			
1991	747	309	1,056			
1992	2,377	1,070	3,447			
1993	756	573	1,329			
1994	2,429	178	2,607			
1995	9,462	839	10,300			
1996	20,490	1,084	21,574			
1997	8,972	962	9,934			
1998	4,001	1,269	5,270			
1999	4,114	573	4,687			
2000	8,649	983	9,612			
2001	12,044	3,955	15,999			
2002	11,454	6,955	18,409			
2003	35,696	6,959	42,655			
2004	69,995	9,341	79,336			
2005	15,757	9,682	25,439			

Run Size: To determine the total numbers of salmon returning to specific production areas, fish that are harvested in mixed stock and terminal fisheries must be allocated to the streams from which they originated. This allocation is done through a post-season process called "run re-construction," which splits the harvests in each catch area into the numbers of fish that likely were contributed by the individual stocks or management unit thought to be transiting the area. All estimated harvests for each stock or management unit are added to the escapement for that grouping to derive the estimated total return or run size for each year. A discussion of the run re-construction methodology can be found in the SCSCI Appendix Report 1.3 (WDFW and PNPTT 2000). Run size estimates for 2005 along with an updated run size estimate for 2004 are provided in an appendix to this report. Table 3 summarizes the estimates of run sizes with escapements by region for 2005. Table 4 and Figures 1 and 2 show Hood Canal and Strait of Juan de Fuca total run sizes from 1974 through 2005.

This year's relatively large return was anticipated, as was the reduction in production levels from the record return of 96,335 summer chum recruits during 2004. The 2004 return represented a peak year in the strong 4-year cycle exhibited by these stocks, and it has been typical for lower returns to occur in the return years preceding and following the peak. In Table 4, it can be seen that this pattern has occurred with seven of the eight cycle peaks since1974 (HC/SJF combined). The cyclic pattern was reflected in the pre-season forecast for 2005 which was about 25,000 total recruits (with about 18,000 total recruits for Hood Canal and about 6,800 total recruits for Strait of Juan de Fuca) compared to the actual return of about 26,000 recruits in 2005.

Table 3. Regional summer chum run sizes for 2005.					
Hood Canal Region					
Natural escapement	15,311				
Terminal run size	16,315				
Hood Canal total run size	16,378				
Strait of Juan de Fuca Region					
Natural escapement	9,619				
Terminal run size	9,682				
Strait of Juan de Fuca total run size	9,719				

Table 4. Total run sizes for Hood Canal and the Strait of Juan de Fuca summer chum salmon stocks, 1974-2005.						
Return year	Hood Canal run size	Strait of Juan de Fuca run size	HC/SJF combined			
1974	14,222	1,985	16,207			
1975	29,113	1,747	30,860			
1976	74,220	1,673	75,893			
1977	16,688	1,810	18,498			
1978	25,344	3,240	28,584			
1979	9,513	900	10,413			
1980	13,026	5,574	18,600			
1981	5,875	1,139	7,014			
1982	8,331	3,540	11,871			
1983	3,545	1,217	4,762			
1984	3,372	1,707	5,079			
1985	4,424	411	4,835			
1986	7,832	1,217	9,049			
1987	3,971	2,181	6,152			
1988	5,680	4,129	9,809			
1989	4,473	795	5,268			
1990	1,564	528	2,092			
1991	2,199	424	2,623			
1992	3,376	1,394	4,770			
1993	871	643	1,514			
1994	2,959	214	3,173			
1995	9,984	882	10,866			
1996	21,056	1,106	22,162			
1997	9,373	985	10,358			
1998	4,274	1,316	5,590			
1999	4,527	577	5,104			
2000	9,506	987	10,493			
2001	13,375	3,982	17,357			
2002	13,170	6,981	20,151			
2003	36,332	7,015	43,347			
2004	88,643	9,362	98,004			
2005	16,378	9,719	26,097			

Figure 1. Hood Canal summer chum salmon run size (escapement + harvest), 1974-2005.

Figure 2. Strait of Juan de Fuca summer chum salmon run size (escapement + harvest), 1974-2005.

Genetic Stock Identification: During 2005, the Co-managers continued DNA collections for summer chum spawners throughout the region. Table 5 shows the number of DNA samples collected in 2005 as well as the number of samples collected for otoliths and scales. The sampling locations and collection methods are also shown in the table. Only limited funding is currently identified for the processing and analysis of these or other archived samples.

		CSI		Somel	o cizo		
34		GSI	4.11		e size	G 1	
Stream	WRIA	code	Allozyme	DNA ^s	Otolith	Scales	Collection method
Dungeness River	18.0018		0	0	0	0	Foot survey
Jimmycomelately ¹	17.0825	05 IH	0	63	300	300	Trap, foot survey
Salmon Cr. ¹	17.0245	05 II	0	11	400	400	Trap, foot survey
Snow Cr.	17.0219	05 IJ	0	0	169	176	Foot survey
Chimacum Cr.1	17.0203	05 IK	0	0	246	248	Foot survey
Fhorndyke Cr.	17.0170		0	0	0	0	Foot survey
Little Quilcene R.	17.0076	05 IL	0	0	199	233	Foot survey
Big Quilcene R. ¹	17.0012		0	0	0	192	Foot survey
Quilcene Bay ²		NMFS	0	104	104	104	Seine
Dosewallips R.	16.0442	05 IM	0	113	284	352	Foot survey
Duckabush R.	16.0351	05 IN	0	55	167	173	Foot survey
Fulton Cr.	16.0332		0	0	1	1	Foot survey
Hamma Hamma R. ¹	16.0251	05 IO	0	246	377	455	Seine, foot survey
Lilliwaup R. ¹	16.0230	05 IP	0	192	319	332	Trap, foot survey
Little Lilliwaup	16.0228		0	0	1	1	Foot survey
Skokomish R.	16.0001		0	1	2	2	Foot survey
Union R. ¹	15.0503	05 IR	0	107	184	184	Trap, foot survey
Гаhuya R.	15.0446		0	0	0	0	Foot survey
Dewatto R.	15.0420	05 LY	0	0	9	9	Foot survey
Stavis Cr.	15.0404		0	0	0	0	Foot survey
Big Beef Cr. ¹	15.0389	05 IQ	0	38	146	146	Trap, foot survey
Little Anderson	15.0377		0	0	0	0	Foot survey
Fotals			0	930	2,908	3,308	

Table 5 Genetic otolith and scale collections made from adult summer chum salmon in eastern

Stream has supplementation or reintroduction program.

Broodstock collection for NOAA-Fisheries research project at Big Beef Cr.

Some additional scale samples can also be used for DNA analysis.

Biological Data (Age): Age composition determined from scale collections for summer chum salmon in eastern Strait of Juan de Fuca and Hood Canal streams during 2005 are presented in Tables 6a, 6b, and 6c. Of particular interest is the high proportion of age-3 fish from the 2002 brood in the 2005 return; estimated to be about 72% overall (Table 6c). The 2002 brood will contribute to the 2006 return as age-4 fish.

Tables 6a-c. Preliminary 2005 Hood Canal and Strait of Juan de Fuca summer chum age composition data (based on scale data only).

Stream	2	3	4	5	Total
Big Beef Cr.	4	144	30	1	179
Dewatto Cr.	0	8	1	0	9
Union R.	2	135	34	5	176
Skokomish R.	0	1	1	0	2
Lilliwaup	0	285	41	2	328
Hamma Hamma R.	0	354	62	35	451
Duckabush R.	0	117	25	30	172
Dosewallips R.	0	187	40	121	348
B. Quilcene R.	0	165	27	0	192
L. Quilcene R.	1	148	48	35	232
Chimacum Cr.	3	176	67	2	248
Snow Cr.	1	128	33	1	163
Salmon Cr.	3	263	129	5	400
JCL Cr.	8	124	167	1	300
Dungeness R.	0	0	0	0	0
Total	22	2,235	705	238	3,200

 Table 6a. Scale samples (numbers) by age

Table 6b. Scale samples (percentages) by age

Stream	2	3	4	5
Big Beef Cr.	2.2%	80.4%	16.8%	0.6%
Dewatto Cr.	0.0%	88.9%	11.1%	0.0%
Union R.	1.1%	76.7%	19.3%	2.8%
Skokomish R.	0.0%	50.0%	50.0%	0.0%
Lilliwaup	0.0%	86.9%	12.5%	0.6%
Hamma Hamma R.	0.0%	78.5%	13.7%	7.8%
Duckabush R.	0.0%	68.0%	14.5%	17.4%
Dosewallips R.	0.0%	53.7%	11.5%	34.8%
B. Quilcene R.	0.0%	85.9%	14.1%	0.0%
L. Quilcene R.	0.4%	63.8%	20.7%	15.1%
Chimacum Cr.	1.2%	71.0%	27.0%	0.8%
Snow Cr.	0.6%	78.5%	20.2%	0.6%
Salmon Cr.	0.8%	65.8%	32.3%	1.3%
JCL Cr.	2.7%	41.3%	55.7%	0.3%
Dungeness R.	0.0%	0.0%	0.0%	0.0%

Stream	2	3	4	5	Total
Big Beef Cr.	25	904	188	6	1,124
Dewatto Cr.	0	20	3	0	23
Union R.	23	1,524	384	56	1,987
Skokomish R.	0	3	2	0	5
Lilliwaup	0	911	131	6	1,049
Hamma Hamma R.	0	1,110	194	110	1,414
Duckabush R.	0	556	119	143	818
Dosewallips R.	0	1,428	306	924	2,658
B. Quilcene R.	0	4,990	816	0	5,806
L. Quilcene R.	4	552	179	131	866
Chimacum Cr.	17	991	377	11	1,396
Snow Cr.	5	653	168	5	832
Salmon Cr.	46	4,038	1,981	77	6,142
JCL Cr.	35	541	729	4	1,310
Dungeness R.	0	0	0	0	2
Total	154	18,223	5,578	1,474	25,429 a/

 Table 6c. Escapement estimates by age

a/ total esc. = 25,439; no scales for Tahuya or Fulton

Mark Recovery: As noted in the SCSCI and the SCSCI Supplemental Reports, hatchery supplementation techniques are being applied as a strategy to reduce the short-term extinction risk of summer chum salmon in the Hood Canal and Strait of Juan de Fuca regions and to aid in their recovery. Appropriate indigenous broodstocks are also being used to reintroduce summer chum to watersheds where they have recently been extirpated. The summer chum juveniles produced by each supplementation program are uniquely mass-marked prior to release. The supplementation fish were 100% adipose fin-clipped at Quilcene and fish from all other programs were otolith marked. Examination of otoliths or fin clip ratios from spawned adults provides a method to estimate the number of hatchery-origin and natural-origin recruits. This analysis assists in determining 1) the contribution of fry released from each rearing strategy within each supplementation program to the target population and 2) the level of straying of supplementation program-origin fish to other (non-target) drainages.

As has been typical in recent years (WDFW and PNPTT 2003, WDFW and PNPTC 2004), the supplemented Quilcene summer chum stock experienced another strong escapement during 2005, with a total of 5,806 spawners. In 2005, about 89% of Big Quilcene summer chum were unmarked indicating that about 5,200 of the returning fish were natural-origin recruits (pers. comm. T. Kane, U. S. Fish and Wildlife Service, Jan. 2006).

In 2005, more than 2,000 summer chum adults were examined for adipose-clips in 14 streams surveyed in Hood Canal and the Strait of Juan de Fuca. Adipose-clipped summer chum were observed in 7 of the 14 streams surveyed, including Big Quilcene, Little Quilcene, Dosewallips, Duckabush, Hamma Hamma, and Lilliwaup rivers in Hood Canal and Jimmycomelately Creek along the Strait of Juan de Fuca (Tables 7a and 7b). Preliminary analysis indicates that 85% of Quilcene supplementation program fish returned to the Big and Little Quilcene rivers (the streams of origin for the Quilcene supplementation program) and 15% returned to other streams in the Evolutionarily Significant Unit (ESU) (Table 7c).

Tables 7a-c. Preliminary 2005 Hood Canal summer chum adipose-clip composition data (based on scale data only). 1/

	AD-clip composition by age					
2	3	4	5	Total		
0%	0.8%	0%	0%	0.3%		
0%	0%	0%	0%	0%		
0%	0%	0%	0%	0%		
0%	0%	0%	0%	0%		
0%	5.4%	18.8%	0%	7.3%		
0%	11.7%	11.3%	0%	11.7%		
0%	2.7%	0%	2.5%	2.3%		
0%	2.6%	8.0%	0%	2.9%		
0%	2.8%	3.2%	0%	2.7%		
0%	0.4%	0%	0%	0.3%		
0%	0%	0%	0%	0%		
0%	0%	0%	0%	0%		
0%	0%	0%	0%	0%		
0%	0%	0%	0%	0%		
	2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	2 3 0% 0.8% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2.7% 0% 2.6% 0% 2.8% 0% 0.4% 0% 0.4% 0% 0.4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	2 3 4 0% 0.8% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5.4% 18.8% 0% 11.7% 11.3% 0% 2.7% 0% 0% 2.6% 8.0% 0% 2.6% 8.0% 0% 0.4% 0% 0% 0.4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	2 3 4 5 0% 0.8% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5.4% 18.8% 0% 0% 1.7% 11.3% 0% 0% 2.7% 0% 2.5% 0% 2.6% 8.0% 0% 0% 2.8% 3.2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%<		

Table 7a. Adipose (AD)-clip percentages i	in samples by age
---	-------------------

Table 7b. Expanded AD-clip estimates in spawner escapement by age

	AD-clip numbers in escapement by age					
Stream	2	3	4	5	Total	
JCL Cr.	0	4	0	0	4	
Salmon Cr.	0	0	0	0	0	
Snow Cr.	0	0	0	0	0	
Chimacum Cr.	0	0	0	0	0	
L. Quilcene R.	0	30	34	0	63	
B. Quilcene R.	0	584	92	0	676	
Dosewallips R.	0	38	0	23	61	
Duckabush R.	0	14	10	0	24	
Hamma Hamma R.	0	31	6	0	38	
Lilliwaup	0	3	0	0	3	
Skokomish R.	0	0	0	0	0	
Union R.	0	0	0	0	0	
Dewatto Cr.	0	0	0	0	0	
Big Beef Cr.	0	0	0	0	0	
Totals	0	705	142	23	869	

	Age					
	2	3	4	5	Total	
Quilcene supplementation	n prograr	n returns to	Big and Li	ttle Quilce	ene rivers	
Number	0	614	126	0	739	
%		87%	89%	0%	85%	
Ouilcene supplementation program returns to other streams						
Number	0	91	16	23	130	
%		13%	11%	100%	15%	
1/01 1 0			1 0 1	P	1	

 Table 7c. Distribution of Big/Little Quilcene supplementation program

 returns in the Hood Canal summer chum salmon ESU.

1/ Only summer chum fry reared in the Big/Little Quilcene R. supplementation program are marked with an adipose-clip prior to release.

In addition, otolith samples were collected from about 2,900 summer chum adults returning to these streams during 2005 (Table 5) and examination of otolith samples is currently in progress at the WDFW Otolith Lab. Mark data (AD-clips and otoliths combined) indicated that 74% and 83% of the summer chum returning in 2003 and 2004, respectively, were wild (i.e., of natural origin). Preliminary mark data indicates ~70% of summer chum were of natural origin during 2005. The high proportions of natural-origin recruits in recent years indicates that increases in summer chum escapements and run sizes are due to contributions by both natural-origin and supplementation-origin fish.

Harvest Management

The SCSCI established annual fishing regimes beginning in 2000 for Canadian, Washington preterminal, and Washington terminal area fisheries designed to minimize incidental impacts to summer chum salmon. The intent of the Base Conservation Regime (BCR) is to initiate rebuilding by providing incremental increases in escapement over time while providing a limited opportunity for fisheries conducted for the harvest of other species. The BCR has been constructed using a conservative approach that would pass through to spawning escapement, on average, in excess of 95% of the Hood Canal-Strait of Juan de Fuca summer chum recruitment in U.S. waters, and nearly 90% of the total recruitment of the run of each management unit.

The SCSCI established that annual abundance evaluations would be performed for both management units and stocks. Management units (MUs) are made up of one or more stocks that are aggregated in recognition of practical and biological limitations to available data and how fisheries can be effectively managed. In the case of Hood Canal-Strait of Juan de Fuca summer chum, all of the MUs contain only one stock except the Mainstem Hood Canal MU (which is comprised of the Dosewallips, Duckabush, Hamma Hamma, and Lilliwaup stocks). Critical status thresholds are defined for MUs, for both total run size and spawning escapement, and minimum escapement flags are defined for the stocks within the Mainstem MU. An MU is considered to be in critical status when its abundance or escapement in the most recent past return year is lower, or its forecast run size for the coming return year is projected to be lower, than the appropriate threshold value. Minimum escapement flags are useful benchmarks to check for poor performance of any one stock's escapement and is necessary for years when the

overall MU abundance is sufficiently high that the critical abundance threshold would not be triggered but escapement of one or more individual stocks may be extremely low. Minimum escapement flags within the Mainstem MU are 736, 700, 1042, and 182 summer chum for the Dosewallips, Duckabush, Hamma Hamma, and Lilliwaup stocks, respectively (see SCSCI Section 1.7.3).

Harvest management results again can be described as very good during 2005, the sixth year in which the Base Conservation Regime was implemented. Table 8 provides a preliminary overview for 2005 of the pre-season estimates that triggered the various management responses, as well as the post-season estimates of results. Table 9 shows the estimated annual harvest of summer chum salmon during 2005, by management unit and fishery. Table 10 provides the estimated exploitation rates by fishery, in 2005, relative to BCR targets. As indicated, the information for 2005 is preliminary and subject to revision, once commercial catch data are verified and recreational catch data are included.

The 2005 pre-season forecasts correctly predicted that no MU abundance would fall short of its critical threshold. Within the Mainstem Hood Canal MU, as predicted, no stock's escapement triggered its minimum escapement flag.

In 2005, post-season estimates of recruitment were higher than the pre-season forecasts for all MUs, except Quilcene and SE Hood Canal. The expected escapements for all management units were exceeded in 2005. Estimated exploitation rates for each management unit during 2005 were well below the target exploitation rates of the Base Conservation Regime (Table 8).

Exploitation rates during 2005 were well below the BCR targets for Canadian fisheries, U.S. preterminal fisheries, and Hood Canal terminal area fisheries (Table 10). In Quilcene Bay (Marine Area 12A), there is an extreme terminal fishery managed on a stepped fishing schedule based on an in-season assessment of natural escapement; no fishery-specific exploitation rate is defined in the BCR, but an exploitation rate of 5% is expected, at the first step. During 2005, in-season information indicated that the escapement to the Big/Little Quilcene rivers would exceed 2,500 summer chum, additional days per week of gillnet fishing for coho were scheduled, and the summer chum exploitation rate was 3.5% in Quilcene Bay (Table 10).

During the 2005 season, except for the additional gillnet fishing for coho in Quilcene Bay (described above) and provisions made to harvest hatchery coho in the Quilcene River (immediately downstream of the hatchery), no changes were made from the initially adopted plans.

The escapement rate was 99.6% for each Strait of Juan de Fuca MU in 2005. In Hood Canal during 2005, the escapement rate was 96.1% for the Quilcene MU, 98.1% for the Mainstem Hood Canal MU, and 90.4% for the SE Hood Canal MU.

by summer chum salmon harvest management unit in the year 2005.													
Management Category	Sequim	Discovery	Chimacum	Quilcene	Mainstem Hood Canal	SE Hood Canal							
Critical Runsize Threshold ¹	220	930	na	1,260	3,980	340							
Preseason Runsize Forecast	605	5,329	870	8,355	5,911	3,795							
Postseason Runsize Estimate ²	1,315	7,001	1,401	6,943	7,227	2,203							
Forecast Error	-54.0%	-23.9%	-37.9%	20.3%	-18.2%	72.3%							
Expected Escapements ³	1,199	6,385	1,278	5,888	6,439	1,925							
Est. Escapement	1,310	6,974	1,396	6,672	7,089	1,991							
BCR Escapement Target Exceedance	9.2%	9.2%	9.3%	13.3%	10.1%	3.4%							
BCR Target Exploitation Rate	8.8%	8.8%	na	15.2% 4	10.9%	12.6%							
Estimated Exploitation Rate ²	0.4%	0.4%	0.4%	3.9%	1.9%	9.6%							

 Table 8. Post-season assessment of forecasts, recruitment, escapement, and exploitation rates

 by summer chum salmon baryest management unit in the year 2005

¹ See SCSCI Section 1.7.3, Table 1.9

² Post-season recruit estimates are preliminary and will be revised upwards when recreational harvest estimates are added. Estimates are rounded to nearest 1/10th of 1%.

³ Expected escapements are generally those that would result from application of BCR expected exploitation rates. In the case of Quilcene, it was assumed that up to 50% of the entry after mid-September could have been considered "harvestable".

⁴ Expected exploitation rate; Quilcene Bay (12A) managed on a stepped fishing schedule (see text)

Table 9. Summer chum salmon harvest, in 2005, by management unit and fishery.													
Sequim	Discovery	Chimacum	Quilcene	Mainstem Hood Canal	SE Hood Canal								
3	17	3	17	18	5								
2	10	2	10	10	3								
0	0	0	0	110	204								
0	0	0	244	0	0								
	um salmon har Sequim 3 2 0 0 0	Sequim Discovery 3 17 2 10 0 0 0 0 0 0	um salmon harvest, in 2005, by managemenSequimDiscoveryChimacum31732102000000	um salmon harvest, in 2005, by management unit and fSequimDiscoveryChimacumQuilcene3173172102100000000244	um salmon harvest, in 2005, by management unit and fishery. ¹ Sequim Discovery Chimacum Quilcene Mainstem 3 17 3 17 18 2 10 2 10 10 0 0 0 110 0 0 0 244 0								

¹ Post-season harvest estimates are preliminary and will be revised upwards when recreational harvest estimates are added.

Fishery	Exploitation Rates									
	BCR Target (range)	2005 Est. ¹								
Canada	6.3%	0.2%								
	(2.3%-8.3%)									
Preterminal U.S.	2.5%	0.1%								
(Juan de Fuca & San	(0.5%-3.5%)									
Juans)										
Preterminal U.S.	2.5%	0.1%								
(Hood Canal)	(0.5%-3.5%)									
Hood Canal Terminal	2.1%	1.9%								
(12, 12B, 12C, 12D)	(0.5%-3.5%)									
Quilcene Bay (12A)	5.0% ₂	3.5%								
1										
¹ Based on preliminary har	vest data; recreational catc	h not included. Rates								
rounded to nearest $1/10$ th (² Expected exploitation rat)I 1% e: managed on a stepped f	ishing schedule (see text)								

Artificial Production

During 2005, summer chum supplementation programs continued at Jimmycomelately Creek, Hamma Hamma River and Lilliwaup River. A reintroduction program on the Tahuya River, using Union River broodstock, was also continued in 2005. No broodstock were collected at Big Beef Creek for the reintroduction program there due to a misunderstanding with University of Washington (UW) staff about the co-managers' intent to continue the program during 2005; this will be remedied during 2006.

Supplementation or reintroduction programs have been terminated on several streams, because they have met the individual projects' production level goals specified in the SCSCI. Projects that have been terminated include Big Quilcene, Salmon Creek, Chimacum Creek, and Union River; the last fry releases from these programs occurred in 2004 (BY 2003).

A summary is provided in Table 11of brood year 2005 summer chum broodstock collections and egg takes for supplementation programs. Fed fry are scheduled for release from these programs during spring, 2006. In addition, the second year of a reproductive success study conducted by NOAA Fisheries in an artificial stream channel at the UW Big Beef Creek Research Station should result in the release of some unfed summer chum fry in addition to those produced by natural summer chum spawners in Big Beef Creek.

Brood		E	Broodstock						
year					Natural	Percent	Estimat	ted eggs	Planned
	Stream	Males	Females	Total	spawners	removed	Green	Eyed	release date
2005	JCL Cr.	33	30	63	1,247	4.8%	87,804	80,027	April 2006
2005	Hamma Hamma	71	71	142	1,272	10.0%	191,240	148,600	March 2006
	R.								
2005	Lilliwaup R.	49	49	98	951	9.3%	124,200	116,842	March 2006
2005	Union R. a/	51	51	102	1,885	5.1%	125,533	122,175	March 2006

Table 11. Summer chum salmon broodstock collections and egg takes for supplementation programs, brood year 2005.

a/ Fry reared at and released into Tahuya River as reintroduction program

Summary

The improved summer chum salmon returns and escapements to Hood Canal and Strait of Juan de Fuca streams, enhanced by strong returns to various supplementation programs, and combined with the high percentage of natural origin recruits in recent years suggest a substantial reduction of the extinction risk for this Evolutionarily Significant Unit. The reduced return of summer chum in 2005 is not a decline in production, but rather represents a normal response to the 4-year cycle displayed by these fish. While all of the above events are very positive results for the summer chum salmon recovery effort, they do not yet constitute full recovery. The comanagers have developed interim recovery goals for summer chum salmon (PNPTT and WDFW 2003), that require strong production performance of natural origin recruits over three generations (12 years), and the recent years of large returns do not at this time meet the recovery goals. The co-managers are now completing a 5-year review of the Summer Chum Salmon Conservation Initiative, and that document (due in the summer of 2006) will contain a detailed discussion of progress towards full recovery.

References

- Point No Point Treaty (PNPT) Tribes and Washington Department of Fish and Wildlife (WDFW). 2003. Interim summer chum salmon recovery goals. Supplemental Report No. 5, Summer Chum Salmon Conservation Initiative An Implementation Plan to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca. October 2003. Wash. Dept. Fish and Wildlife. Olympia, WA. 36 p.
- Washington Department of Fish and Wildlife (WDFW) and Point No Point Treaty (PNPT)
 Tribes. 2000. Summer Chum Salmon Conservation Initiative An Implementation Plan
 to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca Region. Wash.
 Dept. Fish and Wildlife. Olympia, WA. 800 p.
- Washington Department of Fish and Wildlife (WDFW) and Point No Point Treaty (PNPT)Tribes. 2001. Annual report for the 2000 summer chum salmon return to the Hood Canaland Strait of Juan de Fuca region. Supplemental Report No. 3, Summer Chum Salmon

Conservation Initiative - An Implementation Plan to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca Region. December 2001. Wash. Dept. Fish and Wildlife. Olympia, WA. 123 p.

- Washington Department of Fish and Wildlife (WDFW) and Point No Point Treaty (PNPT) Tribes. 2003. Report on summer chum salmon stock assessment and management activities for 2001 and 2002. Supplemental Report No. 4, Summer Chum Salmon Conservation Initiative – An Implementation Plan to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca. October 2003. Wash. Dept. Fish and Wildlife. Olympia, WA. 219 p.
- Washington Department of Fish and Wildlife (WDFW) and Point No Point Treaty Council (PNPTC). 2004. 2003 Progress report on Hood Canal summer chum salmon. Memorandum dated September 9, 2004. 22 p.
- Washington Department of Fish and Wildlife (WDFW) and Point No Point Treaty Council (PNPTC). 2005. 2004 Progress report on Hood Canal summer chum salmon. Memorandum dated February 10, 2005. 15 p.

<u>Appendix</u>

								10.100									100	
	2004	Harvest						18,430		16	4				3	16	123	76
Mgmt Unit	Prod. Unit	Escape- ment	Brood- stock	82G/J	12D	12C	82F	12A	12B	12	9A	Discov	Se- quim	Terminal	Seattle (Area 10)	Admir- alty (Area 9)	US Conv. Areas	Cana- dian Area 20
Skokomish	Skokomish	24	-	24	-	24			24	24	24		-	24	24	24	24	24
12D	Tahuya Union	8 5,876	100		8 5,976	8 5,976			8 5,976	8 5,977	8 5,977	-		5,985	5,986	5,987	5,994	5,999
12A	L. Quilcene B. Quilcene	3,045 35,000	108			_	35,108	4,516 52,067	4,516 52,067	4,517 52,077	4,517 52,079		-	56,596	56,598	56,607	56,678	56,722
12-12B-12C	Big Beef Anderson Dosewallips Duckabush Hamma Lilliwaup Dewatto	1,852 1 11,549 8,637 2,628 922 23	64 63 95			1,017 23			1,916 1 11,549 8,637 2,691 1,017 23	1,916 1 11,551 8,639 2,691 1,017 23	1,916 1 11,552 8,639 2,692 1,017 23			25,840	25,841	25,845	25,877	25,898
Chimacum	Chimacum	1,139	-										-	1,139		1,139	1,141	1,142
Discovery	Snow Salmon	396 6,021	0		-							396 6,021		6,417		6,418	6,426	6,431
Sequim	Jimmy- comelately	1,601	61		_								1,662	1,662		1,662	1,664	1,666
Dungeness	Dungeness	123			_	-								123		123	123	123
Totals		78,845	491	24	5,984	7,048	35,108	56,583	88,425	88,441	88,445	6,417	1,662	97,786	88,448	97,805	97,928	98,004
Hood Canal E. Strait		69,565 9,280	430 61											88,445 9,341	88,448	88,462 9,343	88,754 9,354	88,643 9,362

Summer Chum Salmon Run Reconstruction Tables, 2004 - 2005

	2005	Harvest				314		244								2	37	62
Mgmt Unit	Prod. Unit	Escape- ment	Brood- stock	82G/J	12D	12C	82F	12A	12B	12	9A	Discov	Sequim	Terminal	Seattle (Area 10)	Admir- alty (Area 9)	US Conv. Areas	Cana- dian Area 20
Skokomish	Skokomish	5		5	-	6			6	6	6	-		6	6	6	6	6
12D	Tahuya Union	4 1,885	102		4 1,987	4 2,190			4 2,190	4 2,190	4 2,190	-		2,195	2,195	2,195	2,198	2,203
12A	L. Quilcene B. Quilcene	866 5,702	104			-	5,806	898 6,018	898 6,018	898 6,018	898 6,018	-		6,916	6,916	6,917	6,926	6,943
12-12B- 12C	Big Beef Anderson Dosewallips Duckabush Hamma Lilliwaup Dewatto	1,124 0 2,658 821 1,272 951 23	(142 98			1,156			1,124 0 2,658 821 1,414 1,156 25	1,124 0 2,658 821 1,414 1,156 25	1,124 0 2,658 821 1,414 1,156 25			7,199	7,199	7,199	7,209	7,227
Chimacum	Chimacum	1,396			-									1,396		1,396	1,398	1,401
Discovery	Snow Salmon	832 6,142				-		_				832 6,142	_	6,974		6,975	6,984	7,001
Sequim	Jimmycome- lately	- 1,247	63			-		-				_	1,310	1,310		1,310	1,312	1,315
Dungeness	Dungeness	2								_		_		2		2	2	2
Totals		24,930	509	5	1,991	3,382	5,806	6,916	16,315	16,315	16,315	6,974	1,310	25,997	16,315	25,999	26,036	26,097
Hood Canal E. Strait	l	15,311 9,619	446 63	5										16,315 9,682	16,315	16,316 9,683	16,339 9,696	16,378 9,719