

USING DNA TO ESTIMATE COUGAR POPULATIONS IN WASHINGTON: A CITIZEN SCIENCE COLLABORATION

Richard A. Beausoleil, Bear & Cougar Specialist, WDFW

Acknowledgements:

Kenneth A. Warheit, Shannon Knapp, Donny Martorello

METHODS

Using dogs = efficiency
Not physically handling cougars = safety

> Volunteer hound handlers worked specific sub-units within the study area

- > Confining handlers to sub-units within the study area allows for:
 - uniform coverage and equal sampling intensity throughout the project area
 - surrounding handlers to pick up the effort when / if a particular handler cannot fulfill the minimum days required (due to illness, equipment failure, family/pet emergencies)
- Biopsy Delivery Systems Tested

Biopsy Darts Tested

- **▶** Data Collection
 - Hound handlers collect DNA and field data from live cougars and WDFW staff collects DNA, a tooth for ageing, and data from all known mortalities

PRELIMINARY RESULTS

> Microsatellite Analysis

The graphic below shows 3 samples (left) and 3 of the 18 loci (bottom) used to determine individual identity of cougars

Field effort from volunteer hound handlers

			,	,	
Year	Miles Driven	Man-Hours Invested In the Field	Cougar Samples Retrieved	Samples w/ Full DNA Chain	# Individual Cougars Identified
2003-04	22,815	2,157	58	35	30
2004-05	21,249	1,851	38	34	29
2005-06	20,097	1,944	44	39	31
2006-07	16,555	1,343	23	20	18
2007-08	12,627	1,115	28	25	16
2008-09	10,655	998	17	16	10
2009-10	9,624	764	27	25	20
2010-11	12,421	1,043	26	In lab	In lab
2011-12	12,073	1,471	26	In lab	In lab
Total	138,116	12,686	287		

Known population (minimum) November - February

Year	Captured w / DNA	# Killed in Project Area	# Marks Recovered	Minimum Population Estimate for GMU's 101 & 204
2003-04	30	15	2	$43 = 0.80 / 100 \text{km}^2$
2004-05	29	17	4	$39 = 0.78 / 100 \text{km}^2$
2005-06	31	22	8	$45 = 0.80 / 100 \text{km}^2$
2006-07	18	17	2	$33 = 0.69 / 100 \text{km}^2$
2007-08	16	16	5	$27 = 0.50 / 100 \text{km}^2$
2008-09	10	8	0	$18 = 0.33 / 100 \text{km}^2$
2009-10	20	14	3	$31 = 0.57 / 100 \text{km}^2$
2010-11	In lab	In lab	In lab	In lab
2011-12	In lab	In lab	In lab	In lab
	154+	109+	24+	$Avg. = .64/100 km^2$

> 2010 Population estimate. When remaining samples are analyzed, more modeling will resume.

OBJECTIVES

- Acquire a scientific population estimate of cougars in northeast Washington (Okanogan & Ferry Counties)
- Establish a long-term monitoring technique that is reliable, replicable & affordable
- Evaluate whether this method could be applied statewide and be useful to other state wildlife agencies
- > Involve the public in wildlife science & management

STUDY AREA (5400km², GMU's 101 & 204)

HOW THE DNA PROJECT WORKS

- ► It's a Mark-Recapture project
- > Project personnel track and tree a cougar using hounds
- > Handlers shoot a biopsy dart at the cougar's hind quarter
- The dart hits, retrieves a small tissue sample, and falls to the ground
- > The handler then recovers the dart & leaves the cougar in the tree
- The cougar is now "marked" for life..... without immobilizing, marking, or physical handling of any kind (that's the "Mark")
- Hunter kills and all known mortalities are sealed by officers and biologists statewide (that's the "Recapture")
- ➤ WDFW's DNA lab uses microsatellite analysis to determine if DNA from marked animals matches DNA from hunter kills